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Abstract. Notes on our seminar

1. Definitions and notation

For notational purposes we assume that 0 is not a natural number.

2. Towards the exponential drift for SL2(R)

2.1. The case of a finite IFS with uniform contraction rate. In what follows
we let G = SL2(R) and denote by g = sl2(R) its Lie algebra. We fix ourselves a
constant % ∈ (0, 1) and real numbers x1, . . . , xr ∈ R not all zero. We denote

gi =

(
%−1 −xi
0 %

)
(i = 1, . . . , r).

The example to think of is % = 1
3 , r = 2, x1 = 0, and x2 = 2

3 . In what follows,
we let E = {gi : i = 1, . . . , r}. We assume that µ is a fully supported probability
measure on E. Let B = EN and β = µ⊗N.

We write

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
1 0

)
and note that g = R− span{X,Y,H}. We will write

g = g− ⊕ g0 ⊕ g+,

where g− = RX, g0 = RH, g+ = RY . Let a ∈ G be a diagonal matrix and
note that a = ± exp(tH) for some t ∈ R. An elementary calculation shows that
{X,Y,H} is an eigenbasis of g for Ada ∈ SL(g) given by

Ada(v) = ava−1 (v ∈ g).

In particular, we have

Ada(X) = e2tX, Ada(Y ) = e−2tY, Ada(H) = H.

Lemma 2.1. The adjoint representation of G on g and the induced representation
on ∧2g are isomorphic.

Proof. Using the classification of irreducible representations of G it suffices to prove
that both representations are irreducible. As every representation ofG is semisimple
and as the trivial representation is the unique one-dimensional representation of G,
it suffices to prove that both representations do not admit any non-trivial invariant
vectors.

Using the correspondence between irreducible representations of G and repre-
sentations of g, it suffices to show that the representations of g on g and on ∧2g
induced by the adjoint action do not admit any fixed vectors. To this end we recall
that

adY (X) = −H, adY (H) = 2Y, adY (Y ) = 0,
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adX(X) = 0, adX(H) = −2X, adX(Y ) = H.

Let v ∈ g, w ∈ ∧2g be g-fixed vectors. Then

v = ad3
X(v) = 0 and w = ad3

X(w) = 0.

This proves the claim. �

Remark 2.2. (1) More explicitly, one calculates that ∧2Ada is diagonalizable
with eigenbasis {X ∧H,H ∧ Y,X ∧ Y } satisfying

(∧2Ada)(X ∧H) = e2tX ∧H,
(∧2Ada)(X ∧ Y ) = X ∧ Y,
(∧2Ada)(H ∧ Y ) = e−2tH ∧ Y,

and it is not very difficult to see that the map Φ : g→ ∧2g defined by

X 7→ −1

2
X ∧H,

H 7→ X ∧ Y,

Y 7→ −1

2
H ∧ Y

defines an isomorphism of representations of G. Note: It is easier to check
that the isomorphism is g-equivariant. To this end, we recall that for any
V,W ∈ g we have

(∧2adU )(V ∧W ) = (adUV ) ∧W + V ∧ (adUW ).

(2) In what follows let B : g× g → R denote an invariant inner product on g.
Then B2 = Φ∗B : ∧2g × ∧2g → R given by B2(v, w) = B(Φ−1v,Φ−1w)
defines an inner product on ∧2g and Φ : g → ∧2g is a G equivariant
isometry. It will be convenient to assume either that B is SO2(R)-invariant
or that {X,Y,H} is an orthonormal basis.

In what follows, we denote by ‖·‖ the norm on g induced by B. We will abuse
notation and use the same notation for the norm on ∧2g induced by the isometry
Φ.

Corollary 2.3. Let E,µ,B, β as above. In the notation of [SW19, Thm. 2.1] we
can choose W∧1 = RX and W∧2 = R(X ∧H).

Proof. The argument for this was provided earlier already in greater generality.
We reproduce it for concreteness. Note that following the preceding discussion
on isometry of the representations and using that all norms on g and on ∧2g are
equivalent, the conclusion of Corollary 2.3 is independent of the choice of norms
both on g and (independently) on ∧2g. We can therefore assume that B is chosen so
that {X,Y,H} is an orthonormal basis with respect to the inner product B. As of
Lemma 2.1 and by definition of the norm on ∧2g, it suffices to prove the statement
for d = 1.

Let t ∈ R arbitrary and

u(t) =

(
1 t
0 1

)
,

then

Adu(t)X = X, Adu(t)H = H − 2tX, Adu(t)Y = Y + tH − t2X.
Furthermore, each gi ∈ E decomposes as gi = uia, where

a =

(
%−1 0
0 %

)
and ui = u(%−1xi).
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Using the relation

au(t)a−1 = u(%−2t),

one obtains that for any  : N→ {1, . . . , r} we have

(2.1) g(n) · · · g(1) = u

(
n∑
`=1

%−2(n−`)−1x(`)

)
an.

This is proven by induction. If n = 1, the statement is clearly true. The induction
step is then given by

g(n+1) · · · g(1) = u(x(n+1))au

(
n∑
`=1

%−2(n−`)−1x(`)

)
an

= u(x(n+1))u

(
%−2

n∑
`=1

%−2(n−`)−1x(`)

)
an+1

= u

(
n+1∑
`=1

%−2(n+1−`)−1x(`)

)
an+1

Given  as above, we set

tn() =

n∑
`=1

%−2(n−`)−1x(`).

Therefore

Adg(n)···g(1)Y = %2nAdu(tn())Y = %2nY + %2ntn()H − %2ntn()2X,

Adg(n)···g(1)H = Adu(tn())H = H − 2tn()X,

Adg(n)···g(1)X = %−2nAdu(tn())X = %−2nX.

We have

|tn()| �
n−1∑
`=0

%−2` = %−2(n−1)
1− %2n

1− %2
� %−2n.

Denote by πX the canonical projection g → g /RX. As gX ∈ RX for all
g ∈ suppµ, the adjoint action by elements in E descends to an action on g /RX
and using the preceding calculations, we get

‖Adg(n)···g(1)πX(Y )‖2 = %4n + %4ntn()2,

‖Adg(n)···g(1)πX(H)‖2 = 1.

Therefore we can apply Lemma [SW19, Lem. 6.1] to deduce that for β-a.e. b ∈ B,
i.e. β-a.e.  : N→ {1, . . . , r}, the subalgebra RX is complementary to

V<−2 log % =

{
v ∈ g : lim

n→∞

1

n
‖Adbn···b1v‖ < −2 log %

}
.

�

In what follows, we denote by νb, b ∈ B, the limit (which is defined β-a.s.) given
by

νb = lim
n→∞

(b1 · · · bn)∗ν.

Here, the measure ν is a µ-stationary measure on G/Λ. We let X = G/Λ, BX =
B ×X, BBX the Borel σ-algebra on BX , and define

βX =

∫
B

δb ⊗ νbdβ(b).
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Lemma 2.4. Let πB : BX → B denote the canonical projection. Let BB be
the Borel σ-algebra on B and let AB = π−1B (BB). Then AB ⊆ BX is countably

generated, for βX-a.e. (b, x) ∈ BX we have [(b, x)]AB = {b} ×X, and (βX)AB(b,x) =

δb ⊗ νb.

Proof. One checks that the family {δb⊗ νb : b ∈ B} satisfies the defining properties
of a family of conditional measures. This is purely formal and left to the reader.
Maybe we include this later. �

Lemma 2.5. Let TX : BX → BX , TX(b, x) = (Tb, b−11 x). Then βX is TX-
invariant.

Proof. This is essentially purely formal. Uses only definition of βX and µ-stationarity
of ν. �

The subspace W∧1 acts on BX by

w.(b, x) = (b, ewx) (w ∈W∧1, b ∈ B, x ∈ X).

We denote by Φ· : BX ×W∧1 → BX the action map Φw(z) = w.z. Let AW ⊆ BBX
denote the σ-algebra of Φ-invariant sets. Then AW is a refinement of AB , and
therefore [EW11, Prop. 5.20] the leafwise measures for βX and the action of W∧1

essentially agree with the leafwise measures for νb. In what follows, we denote by
{σz : z ∈ BX} a family of leafwise measures for the action of the Lie subalgebra
W∧1 ≤ g on BX and note that for βX -a.e. (b, x) ∈ BX the measure σ(b,x) agrees

with a leafwise measure for νb with respect to the action of W∧1 on X.
It will be convenient to introduce the map ηa : W∧1 →W∧1 given by ηa(w) = aw

for a > 0.

Lemma 2.6. For β-a.e. z ∈ BX we have

σz ∝ (η%−2)∗σTX(z).

Proof. We note that for all w ∈W∧1

TX ◦ Φw = Φ%2w ◦ TX .

Next we note that for β-a.e. b ∈ B the map αb : x 7→ b−11 x defines an isomorphism
of measure spaces (X, νb) ∼= (X, νTb). Indeed, for all f ∈ Cc(X) we have∫

X

fdνTb = lim
n→∞

∫
X

fd(b2 · · · bn)∗ν

= lim
n→∞

∫
X

f ◦ b−11 d(b1b2 · · · bn)∗ν

=

∫
X

f ◦ b−11 dνb,

that is, νTb = (b−11 )∗νb. In particular, we get that the leafwise measures for νTb
and the leafwise measures for (b−11 )∗νb agree.

We quickly recall the defining property of leafwise measures σ̃x for νb with respect
to W∧1 acting on X. Let F ⊆ X have finite, positive measure. Let A be a W∧1-
subordinate σ-algebra on F . Let λF denote the normalized restriction of νb to F .
Then for λF -a.e. x ∈ F and for all f ∈ Cc(F ) we have∫

F

fd(λF )Ax =
1

σ̃x(Vx)

∫
Vx

(f ◦ Φw)(x)dσ̃x(w).

In particular, this completely characterizes the leafwise measures.
Let (F,A, λF ) as above, i.e. A is W∧1-subordinate. Then α = α(b) defines an

isomorphism
(F,A, λF ) ∼= (α−1F, α−1A, λα−1F ).
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The σ̃-algebra α−1A is again W -subordinate, as for any x ∈ α−1F we have

[x]α−1A = α−1[αx]A = α−1(Vb−1
1 x.b

−1
1 x) = (b1Vb−1

1 xb
−1
1 ).x.

In what follows, we denote by Ux the open subset of W∧1 such that w ∈W∧1 7→ w.x
is injective and [x]α−1A = Ux.x. Using the above calculation and the fact that the
contraction ratios are all equal, we get Ux = %−2Vαx. Using the characterizing
property, we get

1

σ̃αx(Vαx)

∫
Vαx

(f ◦ Φw)(αx)dσ̃αx(w) =

∫
F

fd(λF )Ax

=

∫
α−1F

(f ◦ α)d(λα−1F )α
−1A
x

=
1

σ̃x(Ux)

∫
Ux

(f ◦ α ◦ Φw)(x)dσ̃x(w)

=
1

σ̃x(Ux)

∫
%−2Vαx

(f ◦ Φ%2w ◦ α)(x)dσ̃x(w)

=
1

(η%2)∗σ̃x(Vαx)

∫
Vαx

(f ◦ Φw)(αx)d(η%2)∗σ̃x(w).

This shows that (η%−2)∗σ̃αx ∝ σ̃x. Using the previous remarks, we know that for

almost every (b, x) ∈ BX we have σ(b,x) = σ̃x, and therefore

σ(b,x) ∝ σ̃x ∝ (η%−2)∗σ̃b−1
1 x ∝ (η%−2)∗σTX(b,x).

�
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mogènes. Ann. of Math. (2) 174 (2011), no. 2, 1111–1162.
BQ12. Y. Benoist and J.-F. Quint. Introduction to random walks on homogeneous spaces.

Jpn. J. Math. 7 (2012), no. 2, 135–166.
EL10. M. Einsiedler and E. Lindenstrauss. Diagonal actions on locally homogeneous spaces.

Homogeneous flows, moduli spaces and arithmetic, 155–241, Clay Math. Proc., 10,

Amer. Math. Soc., Providence, RI, 2010.
EW11. M. Einsiedler and T. Ward. Ergodic theory with a view towards number theory. Graduate

Texts in Mathematics, 259. Springer-Verlag London, Ltd., London, 2011.

Ka13. O. Karpenkov. Geometry of Continued Fractions. Algorithms and Computation in Math-
ematics, 26. Springer-Verlag Berlin Heidelberg, 2013.

Kh64. A. Khintchine. Continued Fractions. The University of Chicago Press, 1964.

Mo56. G. Mostow. Fully Reducible Subgroups of Algebraic Groups. Amer. J. Math. (1) 78 (1956),
200–221.

Ne99. J. Neukirch. Algebraic number theory. Grundlehren der Mathematischen Wissenschaften,

322. Springer-Verlag Berlin, 1999.
Se85. C. Series. The modular surface and continued fractions. J. London Math. Soc. (2) 31 (1985),

no. 1, 69–80.
SW19. D. Simmons and B. Weiss. Random walks on homogeneous spaces and Diophantine ap-

proximation on fractals. Invent. Math. 216 (2019), no. 2, 337–394.

Email address: manuel.luethi@math.ethz.ch


	1. Definitions and notation
	2. Towards the exponential drift for SL2(R)
	2.1. The case of a finite IFS with uniform contraction rate.

	References

